3.337 \(\int \frac{1}{(a+b x^3)^2} \, dx\)

Optimal. Leaf size=134 \[ -\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 a^{5/3} \sqrt [3]{b}}+\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} \sqrt [3]{b}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} a^{5/3} \sqrt [3]{b}}+\frac{x}{3 a \left (a+b x^3\right )} \]

[Out]

x/(3*a*(a + b*x^3)) - (2*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(3*Sqrt[3]*a^(5/3)*b^(1/3)) + (2*L
og[a^(1/3) + b^(1/3)*x])/(9*a^(5/3)*b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(9*a^(5/3)*b^(1/
3))

________________________________________________________________________________________

Rubi [A]  time = 0.0633538, antiderivative size = 134, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.778, Rules used = {199, 200, 31, 634, 617, 204, 628} \[ -\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 a^{5/3} \sqrt [3]{b}}+\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} \sqrt [3]{b}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} a^{5/3} \sqrt [3]{b}}+\frac{x}{3 a \left (a+b x^3\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^3)^(-2),x]

[Out]

x/(3*a*(a + b*x^3)) - (2*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(3*Sqrt[3]*a^(5/3)*b^(1/3)) + (2*L
og[a^(1/3) + b^(1/3)*x])/(9*a^(5/3)*b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(9*a^(5/3)*b^(1/
3))

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b x^3\right )^2} \, dx &=\frac{x}{3 a \left (a+b x^3\right )}+\frac{2 \int \frac{1}{a+b x^3} \, dx}{3 a}\\ &=\frac{x}{3 a \left (a+b x^3\right )}+\frac{2 \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{9 a^{5/3}}+\frac{2 \int \frac{2 \sqrt [3]{a}-\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{9 a^{5/3}}\\ &=\frac{x}{3 a \left (a+b x^3\right )}+\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} \sqrt [3]{b}}+\frac{\int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 a^{4/3}}-\frac{\int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{9 a^{5/3} \sqrt [3]{b}}\\ &=\frac{x}{3 a \left (a+b x^3\right )}+\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} \sqrt [3]{b}}-\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 a^{5/3} \sqrt [3]{b}}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{3 a^{5/3} \sqrt [3]{b}}\\ &=\frac{x}{3 a \left (a+b x^3\right )}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} a^{5/3} \sqrt [3]{b}}+\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} \sqrt [3]{b}}-\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 a^{5/3} \sqrt [3]{b}}\\ \end{align*}

Mathematica [A]  time = 0.0582142, size = 118, normalized size = 0.88 \[ \frac{-\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{\sqrt [3]{b}}+\frac{3 a^{2/3} x}{a+b x^3}+\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b}}-\frac{2 \sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{\sqrt [3]{b}}}{9 a^{5/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^3)^(-2),x]

[Out]

((3*a^(2/3)*x)/(a + b*x^3) - (2*Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/b^(1/3) + (2*Log[a^(1/3)
+ b^(1/3)*x])/b^(1/3) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/b^(1/3))/(9*a^(5/3))

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 115, normalized size = 0.9 \begin{align*}{\frac{x}{3\,a \left ( b{x}^{3}+a \right ) }}+{\frac{2}{9\,ab}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{1}{9\,ab}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}+{\frac{2\,\sqrt{3}}{9\,ab}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a)^2,x)

[Out]

1/3*x/a/(b*x^3+a)+2/9/a/b/(1/b*a)^(2/3)*ln(x+(1/b*a)^(1/3))-1/9/a/b/(1/b*a)^(2/3)*ln(x^2-(1/b*a)^(1/3)*x+(1/b*
a)^(2/3))+2/9/a/b/(1/b*a)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x-1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.54526, size = 927, normalized size = 6.92 \begin{align*} \left [\frac{3 \, a^{2} b x + 3 \, \sqrt{\frac{1}{3}}{\left (a b^{2} x^{3} + a^{2} b\right )} \sqrt{-\frac{\left (a^{2} b\right )^{\frac{1}{3}}}{b}} \log \left (\frac{2 \, a b x^{3} - 3 \, \left (a^{2} b\right )^{\frac{1}{3}} a x - a^{2} + 3 \, \sqrt{\frac{1}{3}}{\left (2 \, a b x^{2} + \left (a^{2} b\right )^{\frac{2}{3}} x - \left (a^{2} b\right )^{\frac{1}{3}} a\right )} \sqrt{-\frac{\left (a^{2} b\right )^{\frac{1}{3}}}{b}}}{b x^{3} + a}\right ) -{\left (b x^{3} + a\right )} \left (a^{2} b\right )^{\frac{2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac{2}{3}} x + \left (a^{2} b\right )^{\frac{1}{3}} a\right ) + 2 \,{\left (b x^{3} + a\right )} \left (a^{2} b\right )^{\frac{2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac{2}{3}}\right )}{9 \,{\left (a^{3} b^{2} x^{3} + a^{4} b\right )}}, \frac{3 \, a^{2} b x + 6 \, \sqrt{\frac{1}{3}}{\left (a b^{2} x^{3} + a^{2} b\right )} \sqrt{\frac{\left (a^{2} b\right )^{\frac{1}{3}}}{b}} \arctan \left (\frac{\sqrt{\frac{1}{3}}{\left (2 \, \left (a^{2} b\right )^{\frac{2}{3}} x - \left (a^{2} b\right )^{\frac{1}{3}} a\right )} \sqrt{\frac{\left (a^{2} b\right )^{\frac{1}{3}}}{b}}}{a^{2}}\right ) -{\left (b x^{3} + a\right )} \left (a^{2} b\right )^{\frac{2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac{2}{3}} x + \left (a^{2} b\right )^{\frac{1}{3}} a\right ) + 2 \,{\left (b x^{3} + a\right )} \left (a^{2} b\right )^{\frac{2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac{2}{3}}\right )}{9 \,{\left (a^{3} b^{2} x^{3} + a^{4} b\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^2,x, algorithm="fricas")

[Out]

[1/9*(3*a^2*b*x + 3*sqrt(1/3)*(a*b^2*x^3 + a^2*b)*sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*x^3 - 3*(a^2*b)^(1/3)*a*x
- a^2 + 3*sqrt(1/3)*(2*a*b*x^2 + (a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt(-(a^2*b)^(1/3)/b))/(b*x^3 + a)) - (b*
x^3 + a)*(a^2*b)^(2/3)*log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*(b*x^3 + a)*(a^2*b)^(2/3)*log(a*b*
x + (a^2*b)^(2/3)))/(a^3*b^2*x^3 + a^4*b), 1/9*(3*a^2*b*x + 6*sqrt(1/3)*(a*b^2*x^3 + a^2*b)*sqrt((a^2*b)^(1/3)
/b)*arctan(sqrt(1/3)*(2*(a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - (b*x^3 + a)*(a^2*b)^(2
/3)*log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*(b*x^3 + a)*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2/3)))
/(a^3*b^2*x^3 + a^4*b)]

________________________________________________________________________________________

Sympy [A]  time = 0.546484, size = 39, normalized size = 0.29 \begin{align*} \frac{x}{3 a^{2} + 3 a b x^{3}} + \operatorname{RootSum}{\left (729 t^{3} a^{5} b - 8, \left ( t \mapsto t \log{\left (\frac{9 t a^{2}}{2} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a)**2,x)

[Out]

x/(3*a**2 + 3*a*b*x**3) + RootSum(729*_t**3*a**5*b - 8, Lambda(_t, _t*log(9*_t*a**2/2 + x)))

________________________________________________________________________________________

Giac [A]  time = 1.11334, size = 171, normalized size = 1.28 \begin{align*} -\frac{2 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{9 \, a^{2}} + \frac{x}{3 \,{\left (b x^{3} + a\right )} a} + \frac{2 \, \sqrt{3} \left (-a b^{2}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{9 \, a^{2} b} + \frac{\left (-a b^{2}\right )^{\frac{1}{3}} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{9 \, a^{2} b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^2,x, algorithm="giac")

[Out]

-2/9*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/a^2 + 1/3*x/((b*x^3 + a)*a) + 2/9*sqrt(3)*(-a*b^2)^(1/3)*arctan(1
/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a^2*b) + 1/9*(-a*b^2)^(1/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(
2/3))/(a^2*b)